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Abstract

We investigate the potential implications of large language models (LLMs), such as Generative Pre-
trained Transformers (GPTs), on the U.S. labor market, focusing on the increased capabilities arising from
LLM-powered software compared to LLMs on their own. Using a new rubric, we assess occupations based
on their alignment with LLM capabilities, integrating both human expertise and GPT-4 classifications.
Our findings reveal that around 80% of the U.S. workforce could have at least 10% of their work tasks
affected by the introduction of LLMs, while approximately 19% of workers may see at least 50% of their
tasks impacted. We do not make predictions about the development or adoption timeline of such LLMs.
The projected effects span all wage levels, with higher-income jobs potentially facing greater exposure to
LLM capabilities and LLM-powered software. Significantly, these impacts are not restricted to industries
with higher recent productivity growth. Our analysis suggests that, with access to an LLM, about 15%
of all worker tasks in the US could be completed significantly faster at the same level of quality. When
incorporating software and tooling built on top of LLMs, this share increases to between 47 and 56%
of all tasks. This finding implies that LLM-powered software will have a substantial effect on scaling
the economic impacts of the underlying models. We conclude that LLMs such as GPTs exhibit traits of
general-purpose technologies, indicating that they could have considerable economic, social, and policy
implications.

1 Introduction

As shown in Figure[I] recent years, months, and weeks have seen remarkable progress in the field of generative
Al and large language models (LLMs). While the public often associates LLMs with various iterations of the
Generative Pre-trained Transformer (GPT), LLMs can be trained using a range of architectures, and are not
limited to transformer-based models (Devlin et al., 2019). LLMs can process and produce various forms of
sequential data, including assembly language, protein sequences and chess games, extending beyond natural
language applications alone. In this paper, we use LLMs and GPTs somewhat interchangeably, and specify in
our rubric that these should be considered similar to the GPT-family of models available via ChatGPT or
the OpenAl Playground (which at the time of labeling included models in the GPT-3.5 family but not in the
GPT-4 family). We examine LLMs with text- and code-generating abilities, use the term "generative Al" to
additionally include modalities such as images or audio, and use "LLM-powered software" to cover tools built
on top of LLMs or that combine LLMs with other generative Al models.

*Corresponding author (pamela@openai.com). Authors contributed equally and are listed alphabetically.
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Figure 1: To get a sense of how quickly model capabilities are progressing — consider the jump in exam

performance between GPT-3.5 and GPT-4 2023b).

Our study is motivated less by the progress of these models alone though, and more by the breadth,
scale, and capabilities we’ve seen in the complementary technologies developed around them. The role of
complementary technologies remains to be seen, but maximizing the impact of LLMs appears contingent
on integrating them with larger systems (Bresnahan, [2019; [Agrawal et al.l 2021). While the focus of our
discussion is primarily on the generative capabilities of LLMs, it is important to note that these models can
also be utilized for various tasks beyond text generation. For example, embeddings from LLMs can be used
for custom search applications, and LLMs can perform tasks such as summarization and classification where
the context may be largely contained in the prompt.

To complement predictions of technology’s impacts on work and provide a framework for understanding
the evolving landscape of language models and their associated technologies, we propose a new rubric
for assessing LLM capabilities and their potential effects on jobs. This rubric (A.T)) measures the overall
exposure of tasks to LLMs, following the spirit of prior work on quantifying exposure to machine learning
(Brynjolfsson et al., 2018}, [Felten et al., 2018; Webbl, 2020). We define exposure as a proxy for potential
economic impact without distinguishing between labor-augmenting or labor-displacing effects. We employ
human annotators and GPT-4 itself as a classifier to apply this rubric to occupational data in the U.S. economy,
primarily sourced from the O*NET database[]P|

To construct our primary exposure dataset, we collected both human annotations and GPT-4 classifications,
using a prompt tuned for agreement with a sample of labels from the authors. We observe similar agreement
levels in GPT-4 responses and between human and machine evaluations, when aggregated to the task level.

IThis is distinct from recent social science research that makes use of LLMs to simulate human behavior (Horton, [2023} |Sorensen|

2While our exposure rubric does not necessarily tie the concept of language models to any particular model, we were strongly
motivated by our observed capabilities of GPT-4 and the suite of capabilities we saw in development with OpenAI’s launch partners

(OpenAl 20235).
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This exposure measure reflects an estimate of the technical capacity to make human labor more efficient;
however, social, economic, regulatory, and other determinants imply that technical feasibility does not
guarantee labor productivity or automation outcomes. Our analysis indicates that approximately 19% of jobs
have at least 50% of their tasks exposed when considering both current model capabilities and anticipated
tools built upon them. Human assessments suggest that only 3% of U.S. workers have over half of their tasks
exposed to LLMs when considering existing language and code capabilities without additional software or
modalities. Accounting for other generative models and complementary technologies, our human estimates
indicate that up to 49% of workers could have half or more of their tasks exposed to LLMs.

Our findings consistently show across both human and GPT-4 annotations that most occupations exhibit
some degree of exposure to LLMs, with varying exposure levels across different types of work. Occupations
with higher wages generally present with higher exposure, a result contrary to similar evaluations of overall
exposure to machine learning (Brynjolfsson et al.,2023). When regressing exposure measures on skillsets
using O*NET’s skill rubric, we discover that roles heavily reliant on science and critical thinking skills show
a negative correlation with exposure, while programming and writing skills are positively associated with
LLM exposure. Following |Autor et al.| (2022a), we examine barriers to entry by "Job Zones" and find that
occupational exposure to LLMs weakly increases with the difficulty of job preparation. In other words,
workers facing higher (lower) barriers to entry in their jobs tend to experience more (less) exposure to LLMs.

We further compare our measurements to previous efforts documenting the distribution of automation
exposure in the economy and find broadly consistent results. Most other technology exposure measures we
examine are statistically significantly correlated with our preferred exposure measure, while measures of
manual routineness and robotics exposure show negative correlations. The variance explained by these earlier
efforts (Acemoglu and Autor, 2011a; Frey and Osborne, 2017} [Brynjolfsson et al.| 2018 [Felten et al.,[2018};
Webb, 2020; Brynjolfsson et al.,|2023)), along with wage controls, ranges from 60 to 72%, indicating that 28
to 40% of the variation in our Al exposure measure remains unaccounted for by previous technology exposure
measurements.

We analyze exposure by industry and discover that information processing industries (4-digit NAICS)
exhibit high exposure, while manufacturing, agriculture, and mining demonstrate lower exposure. The
connection between productivity growth in the past decade and overall LLM exposure appears weak, suggesting
a potential optimistic case that future productivity gains from LLMs may not exacerbate possible cost disease
effects (Baumol, 2012} |Aghion et al., 2018). E]

Our analysis indicates that the impacts of LLMs like GPT-4, are likely to be pervasive. While LLMs
have consistently improved in capabilities over time, their growing economic effect is expected to persist and
increase even if we halt the development of new capabilities today. We also find that the potential impact of
LLMs expands significantly when we take into account the development of complementary technologies.
Collectively, these characteristics imply that Generative Pre-trained Transformers (GPTs) are general-purpose
technologies (GPTs)[¥| (Bresnahan and Trajtenberg| 1995} [Lipsey et al., [2005).

(Goldfarb et al.l 2023) argue that machine learning as a broad category is likely a general-purpose
technology. Our evidence supports a wider impact, as even subsets of machine learning software meet the
criteria for general-purpose technology status independently. This paper’s primary contributions are to provide
a set of measurements of LLM impact potential and to demonstrate the use case of applying LLMs to develop
such measurements efficiently and at scale. Additionally, we showcase the general-purpose potential of LLMs.
If "GPTs are GPTs," the eventual trajectory of LLM development and application may be challenging for
policymakers to predict and regulate. As with other general-purpose technologies, much of these algorithms’

3Baumol’s cost disease is a theory that explains why the cost of labor-intensive services, such as healthcare and education,
increases over time. This happens because wages for skilled workers in other industries increase, but there is no corresponding
increase in productivity or efficiency in these service industries. Therefore, the cost of labor in these industries becomes relatively
more expensive compared to other goods and services in the economy.

“For the remainder of the paper we spell out general-purpose technologies when it is used outside of stating "GPTs are GPTs."
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potential will emerge across a broad range of economically valuable use cases, including the creation of new
types of work (Acemoglu and Restrepol 2018} |Autor et al., [2022a)). Our research serves to measure what is
technically feasible now, but necessarily will miss the evolving impact potential of the LLMs over time.

The paper is structured as follows: Section [2]reviews relevant prior work, Section [3|discusses methods
and data collection, Section [4] presents summary statistics and results, Section [5|relates our measurements to
earlier efforts, Section@ discusses the results, and Section [/|offers concluding remarks.

2 Literature Review

2.1 The Advancement of Large Language Models

In recent years, generative Al models have gained significant attention from both the artificial intelligence
(AI) research community and the general public, due to their ability to tackle a wide array of complex
language-based tasks. The progress in these models’ abilities has been fueled by multiple factors, including
increased model parameter count, greater training data volume, and enhanced training configurations (Brown
et al., 2020; Radford et al., 2019} [Hernandez et al.l 2021; Kaplan et al.,[2020)). Broad, state-of-the-art LLMs,
such as LaMDA (Thoppilan et al., 2022) and GPT-4 (OpenAll, [2023b), excel in diverse applications like
translation, classification, creative writing, and code generation—capabilities that previously demanded
specialized, task-specific models developed by expert engineers using domain-specific data.

Concurrently, researchers have improved the steerability, reliability, and utility of these models using
methods like fine-tuning and reinforcement learning with human feedback (Ouyang et al., [2022; Bai et al.|
2022). These advancements enhance the models’ ability to discern user intent, rendering them more
user-friendly and practical. Moreover, recent studies reveal the potential of LLMs to program and control
other digital tools, such as APIs, search engines, and even other generative Al systems (Schick et al., [2023;
Mialon et al.l 2023]; (Chase, 2022). This enables seamless integration of individual components for better
utility, performance, and generalization. At their limit, these trends suggest a world where LLMs may be
capable of executing any task typically performed at a computer.

Generative Al models have mostly been deployed as modular specialists, performing specific tasks such as
generating images from captions or transcribing text from speech. However, we argue that it is essential to view
LLMs as versatile building blocks for creating additional tools. Developing these tools and integrating them
into systems will require time and possibly significant reconfiguration of existing processes across various
industries. Nevertheless, we are already witnessing emerging adoption trends. Despite their limitations,
LLMs are increasingly being integrated into specialized applications in fields like writing assistance, coding,
and legal research. These specialized applications then allow businesses and individuals to adopt LLMs into
their workflows.

We emphasize the significance of these complementary technologies, partly because out-of-the-box
general-purpose LLMs may continue to be unreliable for various tasks due to issues such as factual inaccuracies,
inherent biases, privacy concerns, and disinformation risks (Abid et al., [2021; Schramowski et al., [2022};
Goldstein et al.,[2023; |(OpenAl, [2023a). However, specialized workflows—including tooling, software, or
human-in-the-loop systems—can help address these shortcomings by incorporating domain-specific expertise.
For example, Casetext| offers LLM-based legal research tools that provide lawyers with quicker and more
accurate legal research results, utilizing embeddings and summarization to counter the risk that GPT-4 could
provide inaccurate details about a legal case or set of documents. GitHub Copilot/is a coding assistant that
employs LLMs to generate code snippets and auto-complete code, which users can then accept or reject based
on their expertise. In other words, while it’s true that on its own GPT-4 does not "know what time it is," it’s
easy enough to give it a watch.

Furthermore, a positive feedback loop may emerge as LLLMs surpass a specific performance threshold,
allowing them to assist in building the very tooling that enhances their usefulness and usability across various


https://casetext.com/
https://github.com/features/copilot
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contexts. This could lower the cost and engineering expertise required to create such tools, potentially
accelerating LLLM adoption and integration even further (Chen et al.,[2021; Peng et al., 2023)). LLMs can also
become valuable assets in machine learning model development—serving as coding assistants for researchers,
data labeling services, or synthetic data generators. There is potential for such models to contribute to
economic decision-making at the task level, for instance, by refining methods for task and sub-task allocation
between humans and machines (Singla et al., [2015; Shahaf and Horvitz, 2010). As LLMs advance over time
and better align with user preferences, we can anticipate continuous improvement in performance. However, it
is essential to recognize that these trends also bring a variety of serious risks. (Khlaaf et al., [2022; Weidinger
et al.| [2022; Solaiman et al., [2019)

2.2 The Economic Impacts of Automation Technologies

A large and growing body of literature addresses the labor market impacts of Al and automation technologies.
The concept of skill-biased technological change and the task model of automation—often considered
the standard framework for understanding technology’s influence on labor—originated from research
demonstrating that technological progress raises the demand for skilled workers over unskilled workers (Katz
and Murphyl, [1992)). Numerous studies have built upon this concept, exploring the effects of technological
change and automation on workers within a task-based framework (Autor et al., 2003} |Acemoglu and Autor,
2011bj;/Acemoglu and Restrepo, 2018)). This strand of research has shown that workers involved in routine and
repetitive tasks are at a higher risk of technology-driven displacement, a phenomenon known as routine-biased
technological change. More recent studies have distinguished between technology’s task-displacement and
task-reinstatement effects (where new technology increases the need for a wider array of labor-intensive tasks)
(Acemoglu and Restrepo}, 2018, [2019). Several studies have shown that automation technologies have resulted
in wage inequality in the US, driven by relative wage declines for workers specializing in routine tasks (Autor
et al., [2006; |Van Reenen, [2011; |Acemoglu and Restrepo), [2022b).

Prior research has employed various approaches to estimate the overlap between Al capabilities and
the tasks and activities workers undertake in different occupations. These methods include mapping patent
descriptions to worker task descriptions (Webb), 2020; Meindl et al., [2021)), linking Al capabilities to
occupational abilities documented in the O*NET database (Felten et al.l 2018| [2023), aligning Al task
benchmark evaluations with worker tasks via cognitive abilities (Tolan et al., [2021)), labeling automation
potential for a subset of US occupations and using machine learning classifiers to estimate this potential for
all other US occupations (Frey and Osborne, 2017)), modeling task-level automation and aggregating the
results to occupation-level insights (Arntz et al.l 2017}, collecting expert forecasts (Grace et al., |2018]), and
most relevantly to this paper, devising a new rubric to assess worker activities for their suitability for machine
learning (Brynjolfsson et al.| 2018} 2023)). Some of these approaches have found exposure to Al technologies
at the task-level tends to be diversified within occupation. Considering each job as a bundle of tasks, it would
be rare to find any occupation for which Al tools could do nearly all of the work. (Autor et al.,2022a)) finds as
well that automation and augmentation exposures tend to be positively correlated. There is also a growing set
of studies examining specific economic impacts and opportunities for LLMs (Bommasani et al., 2021} |[Felten
et al., 2023 Korinek, [2023; Mollick and Mollick} 2022; Noy and Zhang}, 2023 Peng et al., | 2023). Alongside
this work, our measurements help characterize the broader potential relevance of language models to the
labor market.

General-purpose technologies (e.g. printing, the steam engine) are characterized by widespread prolifera-
tion, continuous improvement, and the generation of complementary innovations (Bresnahan and Trajtenberg,
1995 Lipsey et al., [2005). Their far-reaching consequences, which unfold over decades, are difficult to
anticipate, particularly in relation to labor demand (Bessen, 2018} Korinek and Stiglitz, 2018;|Acemoglu et al.,
2020; Benzell et al., [2021)). The realization of general purpose technologies’ full potential requires extensive
co-invention (Bresnahan and Trajtenberg, [1995; Bresnahan et al., {1996, 2002; [Lipsey et al., 2005; Dixon et al.,
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2021)), a costly and time-consuming process involving the discovery of new business procedures (David, [1990;
Bresnahan, |1999; |[Freyl 2019; Brynjolfsson et al., 2021 [Feigenbaum and Gross} 2021). Consequently, many
studies of machine learning technologies focus on systems-level adoption, arguing that organizational systems
may require redesign to effectively take advantage of novel machine learning advancements (Bresnahan),
2019; |Agrawal et al., 2021} |Goldfarb et al., [2023)). Appropriately designed systems can yield considerable
business value and improve firm performance (Rock, 2019; Babina et al., 2021} Zolas et al., 2021]), with Al
tools facilitating the discovery process (Cockburn et al.,|2018}; Cheng et al.,[2022). By employing task-level
information to assess whether LLLMs fulfill the criteria of a general purpose technology, we seek to merge the
two perspectives for understanding the technology-labor relationship.

We attempt to build on these diverse literature streams in several ways. Echoing (Felten et al.| 2023)), we
focus our analysis on the impact of LLMs, rather than addressing machine learning or automation technologies
more broadly. Additionally, we propose a novel method that employs LLMs, specifically GPT-4, to assess tasks
for exposure and automation potential, thereby bolstering human scoring efforts. Subsequently, we aggregate
our findings to occupations and industries, capturing the overall potential exposure in the contemporary U.S.
labor market.

3 Methods and Data Collection

3.1 Data on Activities and Tasks Performed by Occupation in the US

We use the O*NET 27.2 database (O*NET),[2023), which contains information on 1,016 occupations, including
their respective Detailed Work Activities (DWAs) and tasks. A DWA is a comprehensive action that is part of
completing task, such as "Study scripts to determine project requirements." A task, on the other hand, is an
occupation-specific unit of work that may be associated with zero, one, or multiple DWAs. We offer a sample
of tasks and DWAs in Table[Il The two datasets we use consist of:

* 19,265 tasks, consisting of a "task description” and a corresponding occupation, and

* 2,087 DWAs, where most DWAs are connected to one or more tasks, and tasks may be associated with
one or more DWAs, though some tasks lack any associated DWAs.

3.2 Data on Wages, Employment, and Demographics

We obtain employment and wage data from the 2020 and 2021 Occupational Employment series provided by
the Bureau of Labor Statistics. This dataset encompasses occupational titles, the number of workers in each
occupation, and occupation-level employment projections for 2031, typical education required for entry in an
occupation and on-the-job training required to attain competency in an occupation (BLS| [2022). We use the
BLS-recommended crosswalk to O*NET (BLS| [2023b) to link the O*NET task and DWA dataset and the
BLS Labor Force Demographics (BLS| 2023al), which is derived from the Current Population Survey (CPS).
Both of these data sources are collected by the U.S. government and primarily capture workers who are not
self-employed, are documented, and are working in the so-called formal economy.

3.3 Exposure

We present our results based on an exposure rubric, in which we define exposure as a measure of whether
access to an LLM or LLM-powered system would reduce the time required for a human to perform a specific
DWA or complete a task by at least 50 percent. Though GPT-4 has vision capabilities OpenAl| (2023b) and
"LLM" is often used to refer to a much wider range of modalities, vision and image capabilities were only
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Task ID  Occupation Title DWAs Task Description
14675  Computer Systems Monitor computer system performance Monitor system operation to detect potential
Engineers/Architects  to ensure proper operation. problems.
18310  Acute Care Nurses Operate diagnostic or therapeutic Set up, operate, or monitor invasive
medical instruments or equipment. equipment and devices, such as colostomy or
Prepare medical supplies or equipment tracheotomy equipment, mechanical
for use. ventilators, catheters, gastrointestinal tubes,
and central lines.
4668.0  Gambling Cage Execute sales or other financial Cash checks and process credit card advances
Workers transactions. for patrons.
15709  Online Merchants Execute sales or other financial Deliver e-mail confirmation of completed
transactions. transactions and shipment.
6529  Kindergarten - Involve parent volunteers and older students in
Teachers, Except children’s activities to facilitate involvement
Special Education in focused, complex play.
6568  Elementary School - Involve parent volunteers and older students in

Teachers, Except
Special Education

children’s activities to facilitate involvement
in focused, complex play.

Table 1: Sample of occupations, tasks, and Detailed Work Activities from the O*NET database. We see
that aggregating over activities alone is imprecise, as evidenced by the fact that we’d expect Gambling Cage
Workers to complete the given DWA in person, using some physicality while we’d expect Online Merchants

to complete the same activity solely with a computer.

included in our definition of LLM-powered software. We provide a summary of our rubric below, while the
complete rubric can be found in[A.T] When we have labels for DWAs, we first aggregate them to the task

level before aggregating to the occupation level.

Summary of exposure rubric

No exposure (EO) if:
* using the described LLLM results in no or minimal reduction in the time required to
complete the activity or task while maintaining equivalent quality[’] or
* using the described LLM results in a decrease in the quality of the activity/task output.
Direct exposure (E1) if:
* using the described LLM via ChatGPT or the OpenAl playground can decrease the time
required to complete the DWA or task by at least half (50%).
LLM+ Exposed (E2) if:
* access to the described LLM alone would not reduce the time required to complete the
activity/task by at least half, but
* additional software could be developed on top of the LLM that could reduce the time it
takes to complete the specific activity/task with quality by at least half. Among these
systems, we count access to image generation systems

“Equivalent quality means that a third party, typically the recipient of the output, would not notice or
care about LLM assistance.

brp practice, as can be seen in the full rubric in Appendix@ we categorize access to image capabilities
separately (E3) to facilitate annotation, though we combine E2 and E3 for all analyses.

We set the exposure threshold at a potential 50% reduction in time required to complete a specific DWA
or task while maintaining consistent quality. We anticipate that adoption will be highest and most immediate




WORKING PAPER

for applications that realize a considerable increase in productivity. Although this threshold is somewhat
arbitrary, it was selected for ease of interpretation by annotators. Moreover, regardless of the chosen threshold,
we guessed that the real-world reduction in task time would likely be slightly or significantly lower than our
estimates, leading us to opt for a relatively high threshold. In our own validation labeling, we found that this
corresponded closely to whether an LLM or LLM-powered software could perform the core part of a task or
nearly the entire task.

Comparison v Weighting Agreement Pearson’s
GPT-4, Rubric 1; Human a El 80.8% 0.223
B El + .5%E2 65.6% 0.591
. El+E2 82.1% 0.654
GPT-4, Rubric 2; Human a El 81.8% 0.221
B El + .5%E2 65.6% 0.538
. El+E2 79.5% 0.589
GPT-4, Rubric 1; GPT-4, Rubric2 «a El 91.1% 0.611
B El + .5%E2 76.0% 0.705
{ El1+E2 82.4% 0.680

Table 2: Model and human comparison of agreement and Pearson’s correlation scores. The agreement score
is determined by looking at how often the two groups agree on the annotation (e.g. EO, E1 or E2). In the
paper we use GPT-4, Rubric 1.

We then collected both human and GPT-4-generated annotations using the exposure rubric, which underlie
the bulk of the analyses in this paper.

* Human Ratings: We obtained human annotations by applying the rubric to each O*NET Detailed
Worker Activity (DWA) and a subset of all O*NET tasks and then aggregated those DWA and task
scored’ at the task and occupation levels. The authors personally labeled a large sample of tasks and
DWAs and enlisted experienced human annotators who have reviewed GPT-3, GPT-3.5 and GPT-4
outputs as part of OpenAl’s alignment work (Ouyang et al., [2022)).

* GPT-4 Ratings: We administered a similar rubric to an early version of GPT-4 (OpenAl| 2023b) but on
all task/occupation pairs rather than DWAs. We made slight modifications to the rubric (which was
used as a "prompt" to the model in this case) to enhance agreement with a set of human labels. Full
agreement rates are given in Table 2]

We construct three primary measures for our dependent variable of interest: (i) @, corresponding to E1 in
the exposure rubric above, anticipated to represent the lower bound of the proportion of exposed tasks within
an occupation, (ii) 8, which is the sum of E1 and 0.5*E2, where the 0.5 weight on E2 is intended to account
for exposure when deploying the technology via complementary tools and applications necessitates additional
investment, and (iii) £, the sum of E1 and E2, an upper bound of exposure that provides an assessment of
maximal exposure to an LLLM and LLM-powered software. We summarize agreement between annotation
groups and measures in Table[2] For the remainder of the analysis, if not specified, the reader may assume that
we refer to 8 exposure — meaning all tasks directly exposed via tools like ChatGPT or the OpenAl Playground
are considered twice as exposed as tasks requiring some complementary innovation.

5The authors annotated DWAs that clearly required a high degree of physicality or manual dexterity, and the contracted annotators
labeled the remaining activities, along with a subset of tasks including those without associated DWAs and those for which there was
no clear task-level annotation after aggregating the DWA annotations.
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Similarity of Human and GPT-4 Ratings by Occupation

Similarity of Human and GPT-4 Ratings by Occupation
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Figure 2: Human raters (x-axis) and GPT-4 ratings (y-axis) show a high degree of agreement about LLM
exposure by occupation. Near the highest levels of exposure following the S method of aggregating exposure
scores to occupations, GPT-4 ratings tend to be lower than Human ratings. We present the raw scatter plot and
the binscatter. Near the top end of exposure ratings, humans are on average more likely to rate an occupation
as exposed.

3.4 Limitations of our methodology
3.4.1 Subjective human judgments

A fundamental limitation of our approach lies in the subjectivity of the labeling. In our study, we employ
annotators who are familiar with LLM capabilities. However, this group is not occupationally diverse,
potentially leading to biased judgments regarding LLMs’ reliability and effectiveness in performing tasks
within unfamiliar occupations. We acknowledge that obtaining high-quality labels for each task in an
occupation requires workers engaged in those occupations or, at a minimum, possessing in-depth knowledge
of the diverse tasks within those occupations. This represents an important area for future work in validating
these results.

3.4.2 Measuring LLMs with GPT-4

Recent research indicates that GPT-4 serves as an effective discriminator, capable of applying intricate
taxonomies and responding to changes in wording and emphasis (OpenAl, 2023b). The outcomes of GPT-4
task classification are sensitive to alterations in the rubric’s wording, the prompt’s order and composition, the
presence or absence of specific examples in the rubric, the level of detail provided, and the definitions given
for key terms. Iterating on the prompt, based on observed outcomes in a small validation set, can enhance the
agreement between model outputs and the rubric’s intent. Consequently, there are slight differences between
the rubric presented to humans and the one used for GPT-4. This decision was made deliberately to guide
the model towards reasonable labels without excessively influencing human annotators. As a result, we use
multiple annotation sources, but none should be considered the definitive ground truth relative to the others.
In this analysis, we present results from human annotators as our primary results. Further improvement and
innovation in crafting effective rubrics for LLM classification remains possible. Still, we observe a high
degree of agreement between human ratings and GPT-4 ratings at the occupation level concerning overall
exposure to LLM systems (see Table[2] Figure [2)).
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Additional Weaknesses

Validity of task-based framework. It is unclear to what extent occupations can be entirely broken
down into tasks, and whether this approach systematically omits certain categories of skills or tasks
that are tacitly required for competent performance of a job. Additionally, tasks can be composed of
sub-tasks, some of which are more automatable than others. Some tasks may function as pre-cursor to
other tasks, such that the completion of downstream tasks is dependent on precursor tasks. If indeed,
the task-based breakdown is not a valid representation of how most work in an occupation is performed,
our exposure analysis would largely be invalidated.

Lack of expertise and task interpretation. Human annotators were mostly unaware of the specific
occupations mapped to each DWA during the labeling process. This led to unclear logic for aggregating
tasks and occupations, as well as some evident discrepancies in labels, demonstrated in Table[I] We
experimented with various aggregation methods and discovered that even with a maximum-matching
approach (taking the matching human<>model label if one existed), the agreement remained relatively
consistent. Ultimately, we collected additional labels for task/occupation pairs where there was
significant disagreement.

Forward-looking and subject to change, with some early evidence. Accurately predicting future
LLM applications remains a significant challenge, even for experts (OpenAl, 2023b). The discovery of
new emergent capabilities, changes in human perception biases, and shifts in technological development
can all affect the accuracy and reliability of predictions regarding the potential impact of LLMs
on worker tasks and the development of LLM-powered software. Our projections are inherently
forward-looking and based on current trends, evidence, and perceptions of technological possibilities.
As a result, they may change as new advancements arise in the field. For example, some tasks that
seem unlikely for LLMs or LLM-powered software to impact today might change with the introduction
of new model capabilities. Conversely, tasks that appear exposed might face unforeseen challenges
limiting language model applications.

Sources of disagreement. While we did not rigorously examine sources of disagreement, we found a
few places where humans and the model tended to get "stuck" in their assessments:

— Tasks or activities where while an LLM could theoretically help or accomplish the task, adopting
it to do so would require multiple people to change their habits or expectations (e.g. meetings,
negotiations),

— Tasks or activities where there is currently some regulation or norm that requires or suggests
human oversight, judgment or empathy (e.g. making decisions, counseling), and

— Tasks or activities where there already exists a technology that can reasonably automate the task
(e.g. making reservations).

4 Results

General-purpose technologies are relatively rare and characterized by their pervasiveness, improvement over
time, and the development of significant co-invention and spillovers (Lipsey et al.,[2005). Our assessment of
LLMs’ potential impact on the labor market is limited since it does not consider total factor productivity or
capital input potential. In addition to their influence on labor, LLMs may also influence these dimensions.
At this stage, some general-purpose technology criteria are easier to evaluate than others. Our primary
focus at this early stage is to test the hypothesis that LLLMs have a pervasive influence on the economy,
similar to the approach taken by (Goldfarb et al., 2023), who analyzed machine learning diffusion through
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job postings to assess its status as a general-purpose technology. Instead of using job postings or studying
machine learning in general, we employ the task evaluation approach with both human and GPT-4 annotations.
This analysis may reveal whether the impacts are limited to a specific set of similar tasks or occupations or if
they will be more widespread.

Our findings suggest that, based on their task-level capabilities, LLMs have the potential to significantly
affect a diverse range of occupations within the U.S. economy, demonstrating a key attribute of general-purpose
technologies. In the following sections, we discuss results across various roles and wage structures. Additional
results on the relative exposure of industries within the U.S. economy can be found in Appendix D]

4.1 Summary Statistics

Summary statistics for these measures can be found in Table 3] Both human and GPT-4 annotations indicate
that average occupation-level @ values fall between 0.14 and 0.15, suggesting that, on average, approximately
15% of tasks within an occupation are directly exposed to LLLMs. This figure increases to over 30% for g
and surpasses 50% for . Coincidentally, human and GPT-4 annotations also tag between 15% and 14% of
total tasks in the dataset as being exposed to LLMs. Based on the 8 values, we estimate that 80% of workers
belong to an occupation with at least 10% of its tasks exposed to LLMs, while 19% of workers are in an
occupation where over half of its tasks are labeled as exposed.

We ran one set of analyses using O*NET’s "Importance” scores but did not find significant changes to our
findings. Though we do acknowledge that not weighting relative importance of a task to a given occupation
yields some curious results (e.g. ranking Barbers as having reasonably high exposure).

Although the potential for tasks to be affected is vast, LLMs and LLM-powered software must be
incorporated into broader systems to fully realize this potential. As is common with general-purpose
technologies, co-invention barriers may initially impede the rapid diffusion of GPTs into economic applications.
Furthermore, predicting the need for human oversight is challenging, especially for tasks where model
capabilities equal or surpass human levels. While the requirement for human supervision may initially slow
down the speed at which these systems diffuse through the economy, users of LLMs and LLM-powered
systems are likely to become increasingly acquainted with the technology over time, particularly in terms of
understanding when and how to trust its outputs.

Occupation Level Exposure

Human GPT-4

mean std mean  std
0.14 0.14 0.14 0.16
030 021 034 0.22
046 030 055 034

N R

Task Level Exposure

Human GPT-4

mean std mean @ std
a 015 036 014 0.35
B 031 037 035 035
£ 047 050 056  0.50

Table 3: Summary statistics of our human and model exposure data.
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Figure 3: Exposure intensity across the economy, displayed on the left in terms of percent of affected
occupations and on the right as percent of affected workers. The distribution of exposure is similar across
occupations and across workers, suggesting that worker concentration in occupations is not highly correlated
with occupational exposure to LLMs or LLM-powered software. We do however expect that it could be more
highly correlated with investment in developing LLM-powered software for particular domains.

4.2 Wages and Employment

In Figure [3] we present the exposure intensity across the economy. The first plot displays exposure in terms
of occupations, while the second plot shows exposure in terms of total workers. Each point on the graph
represents the estimated percentage of workers (and occupations) on the y-axis with an exposure level (a,
B, and ¢) indicated on the x-axis. For example, human annotators determined that 2.4% of workers are
aso-exposed, 18.6% are B50-exposed, and 49.6% are {5p-exposed, where the threshold of 50% comes from the
x-axis and the percentage of workers comes from the y axis in the right plot of Figure 2. At any given point on
the x-axis, the vertical distance between the a and the { represents the exposure potential attributable to tools
and applications beyond direct exposure to LLMs. The distribution of exposure is similar for both workers
and occupations, suggesting that worker concentration in occupations does not have a strong correlation with
occupational exposure to LLMs or LLM-powered software.

Aggregated at the occupation level, human and GPT-4 annotations exhibit qualitative similarities and
tend to correlate, as demonstrated in Figured] Human annotations estimate marginally lower exposure for
high-wage occupations compared to GPT-4 annotations. While there are numerous low-wage occupations
with high exposure and high-wage occupations with low exposure, the overall trend in the binscatter plot
reveals that higher wages are associated with increased exposure to LLMs.

The potential exposure to LLLMs seems to have little correlation with current employment levels. In
Figure 4] both human and GPT-4 ratings of overall exposure are aggregated to the occupation-level (y-axis)
and compared with the log of total employment (x-axis). Neither plot reveals significant differences in LLM
exposure across varying employment levels.

4.3 Skill Importance

In this section, we explore the relationship between the importance of a skill for an occupation (as annotated
in the O*NET dataset) and our exposure measures. First, we use the Basic Skills provided by O*NET (skill
definitions can be found in Appendix [B]) and normalize the measure of skill importance for each occupation
to improve the comprehensibility of the results. Next, we conduct a regression analysis on our exposure
measures (@, 5, {) to examine the strength of associations between skill importance and exposure.
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Figure 4: The binscatter plots depict the exposure to language models (LL.Ms) in various occupations, as
assessed by both human evaluators and GPT-4. These plots compare the exposure to LLM and partial
LLM-powered software () at the occupation level against the log of total employment within an occupation
and log of the median annual wage for occupations. While some discrepancies exist, both human and GPT-4
assessments indicate that higher wage occupations tend to be more exposed to LLMs. Additionally, numerous
lower wage occupations demonstrate high exposure based on our rubric. Core tasks receive twice the weight
of supplemental tasks within occupations when calculating average exposure scores. Employment and wage
data are sourced from the BLS-OES survey conducted in May 2021.
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Exposure to GPTs by Job Zones
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Figure 5: S8 exposure ratings of occupations in the five Job Zones, which are groups of similar occupations that
are classified according to the level of education, experience, and on-the-job training needed to perform them.

Our findings indicate that the importance of science and critical thinking skills are strongly negatively
associated with exposure, suggesting that occupations requiring these skills are less likely to be impacted
by current LLMs. Conversely, programming and writing skills show a strong positive association with
exposure, implying that occupations involving these skills are more susceptible to being influenced by LLMs
(see Table [5]for detailed results).

4.4 Barriers to Entry

Next, we examine barriers to entry to better understand if there is differentiation in exposure due to types of
jobs. One such proxy is an O*NET occupation-level descriptor called the "Job Zone." A Job Zone groups
occupations that are similar in (a) the level of education needed to get a job in the occupation, (b) the amount
of related experience required to do the work, and (c) the extent of on-the-job training needed to do the work.
In the O*NET database, there are 5 Job Zones, with Job Zone 1 requiring the least amount of preparation (3
months) and Job Zone 5 requiring the most extensive amount of preparation, 4 or more years. We observe that
median income increases monotonically across Job Zones as the level of preparation needed also increases,
with the median worker in Job Zone 1 earning $30, 230 and the median worker in Job Zone 5 earning $80, 980.
All of our measures (@, §, and ) show an identical pattern, that is, exposure increases from Job Zone 1 to
Job Zone 4, and either remains similar or decreases at Job Zone 5. Similar to Figure 3] in Figure[5] we plot
the percentage of workers at every threshold of exposure. We find that, on average, the percentage of workers
in occupations with greater than 50% g exposure in Job Zones 1 through 5 have § at 0.00% (Job Zone 1),
6.11% (Job Zone 2), 10.57% (Job Zone 3), 34.5% (Job Zone 4), and 26.45% (Job Zone 5), respectively.

4.4.1 Typical Education Needed for Entry

Since inclusion in a Job Zone accounts for both the education required—which itself is a proxy for skill
acquisition—and the preparation required, we seek data to disentangle these variables. We use two variables
from the Bureau of Labor Statistics’ Occupational data: "Typical Education Needed for Entry" and "On-the-job
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Training Required to Attain Competency"” in an occupation. By examining these factors, we aim to uncover
trends with potential implications for the workforce. There are 3,504,000 workers for whom we lack data on
education and on-the-job training requirements, and they are therefore excluded from the summary tables.

Our analysis suggests that individuals holding Bachelor’s, Master’s, and professional degrees are more
exposed to LLMs and LLM-powered software than those without formal educational credentials (see Table [7).
Interestingly, we also find that individuals with some college education but no degree exhibit a high level of
exposure to LLMs and LLM-powered software. Upon examining the table displaying barriers to entry, we
observe that the jobs with the least exposure require the most training, potentially offering a lower payoft (in
terms of median income) once competency is achieved. Conversely, jobs with no on-the-job training required
or only internship/residency required appear to yield higher income but are more exposed to LLMs.
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Group Occupations with highest exposure % Exposure
Human o Interpreters and Translators 76.5
Survey Researchers 75.0
Poets, Lyricists and Creative Writers 68.8
Animal Scientists 66.7
Public Relations Specialists 66.7
Human g Survey Researchers 84.4
Writers and Authors 82.5
Interpreters and Translators 82.4
Public Relations Specialists 80.6
Animal Scientists 77.8
Human ¢ Mathematicians 100.0
Tax Preparers 100.0
Financial Quantitative Analysts 100.0
Writers and Authors 100.0
Web and Digital Interface Designers 100.0
Humans labeled 15 occupations as "fully exposed."
Model o Mathematicians 100.0
Correspondence Clerks 95.2
Blockchain Engineers 94.1
Court Reporters and Simultaneous Captioners 92.9
Proofreaders and Copy Markers 90.9
Model 8 Mathematicians 100.0
Blockchain Engineers 97.1
Court Reporters and Simultaneous Captioners 96.4
Proofreaders and Copy Markers 95.5
Correspondence Clerks 95.2
Model Accountants and Auditors 100.0
News Analysts, Reporters, and Journalists 100.0
Legal Secretaries and Administrative Assistants 100.0
Clinical Data Managers 100.0
Climate Change Policy Analysts 100.0
The model labeled 86 occupations as "fully exposed.”
Highest variance = Search Marketing Strategists 14.5
Graphic Designers 13.4
Investment Fund Managers 13.0
Financial Managers 13.0
Insurance Appraisers, Auto Damage 12.6

Table 4: Occupations with the highest exposure according to each measurement. The final row lists the
occupations with the highest o value, indicating that they had the most variability in exposure scores.
Exposure percentages indicate the share of an occupation’s task that are exposed to GPTs (@) or GPT-powered
software (B and {), where exposure is defined as driving a reduction in time it takes to complete the task by at
least 50% (see exposure rubric[A.T). As such, occupations listed in this table are those where we estimate
that GPTs and GPT-powered software are able to save workers a significant amount of time completing a
large share of their tasks, but it does not necessarily suggest that their tasks can be fully automated by these

technologies.
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Basic Skill a B Ie
(std err) (std err) (std err)
All skill importance scores are normalized to be between 0 and 1.
Constant 0.082%** -0.112%** 0.300%%*%*
(0.011) (0.011) (0.057)
Active Listening 0.128%** 0.214%%%* 0.4497%%%*
(0.047) (0.043) (0.027)
Mathematics -0.127%** 0.161%#%* 0.787%#%%*
(0.026) (0.021) (0.049)
Reading Comprehension  (0.153%** 0.470%%*%* -0.346%**
(0.041) (0.037) (0.017)
Science -0.114%%* -0.230%** -0.346%**
(0.014) (0.012) (0.017)
Speaking -0.028 0.133%#5%* 0.294#5%*
(0.039) (0.033) (0.042)
Writing 0.368*** 0.467%#%* 0.566%**
(0.042) (0.037) (0.047)
Active Learning -0.157%** -0.065%* 0.028
(0.027) (0.024) (0.032)
Critical Thinking -0.264%** -0.196%** -0.129%%*
(0.036) (0.033) (0.042)
Learning Strategies -0.072%* -0.209%** -0.346%**
(0.028) (0.025) (0.034)
Monitoring -0.067%* -0.149%%* -0.232%%%
(0.023) 0.020) (0.026)
Programming 0.637##* 0.623%** 0.609%**
(0.030) (0.022) (0.024)

Table 5: Regression of occupation-level, human-annotated exposure to GPTs on skill importance for each
skill in the O*NET Basic skills category, plus the programming skill. Descriptions of the skills may be found

in Appendix [B]
Job  Preparation Education Example Occupations Median Tot Emp H M H M H M
Zone Required Required Income (000s) a a B B e r'q
1 None or little High school Food preparation workers, $30,230 13,100 0.03 0.04| 0.06 0.06| 0.09 0.08
(0-3 months) diploma or GED dishwashers, floor sanders
(otional)
2 Some (3-12 High school Orderlies, customer $38,215 73,962 0.07 0.12] 0.16 0.20| 0.24 0.27
months) diploma service representatives,
tellers
3 Medium (1-2 Vocational school, Electricians, barbers, $54,815 37,881 0.11 0.14| 026 0.32| 041 0.51
years) on-the-job training,  medical assistants
or associate